Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400723, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623783

RESUMO

Glycoside hydrolases (glycosidases) take part in myriad biological processes and are important therapeutic targets. Competitive and mechanism-based inhibitors are useful tools to dissect their biological role and comprise a good starting point for drug discovery. The natural product, cyclophellitol, a mechanism-based, covalent and irreversible retaining ß-glucosidase inhibitor has inspired the design of diverse α- and ß-glycosidase inhibitor and activity-based probe scaffolds. Here, we sought to deepen our understanding of the structural and functional requirements of cyclophellitol-type compounds for effective human α-glucosidase inhibition. We synthesized a comprehensive set of α-configured 1,2- and 1,5a-cyclophellitol analogues bearing a variety of electrophilic traps. The inhibitory potency of these compounds was assessed towards both lysosomal and ER retaining α-glucosidases. These studies revealed the 1,5a-cyclophellitols to be the most potent retaining α-glucosidase inhibitors, with the nature of the electrophile determining inhibitory mode of action (covalent or non-covalent). DFT calculations support the ability of the 1,5a-cyclophellitols, but not the 1,2-congeners, to adopt conformations that mimic either the Michaelis complex or transition state of α-glucosidases.

2.
Nat Commun ; 11(1): 4864, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978392

RESUMO

The synthesis of customized glycoconjugates constitutes a major goal for biocatalysis. To this end, engineered glycosidases have received great attention and, among them, thioglycoligases have proved useful to connect carbohydrates to non-sugar acceptors. However, hitherto the scope of these biocatalysts was considered limited to strong nucleophilic acceptors. Based on the particularities of the GH3 glycosidase family active site, we hypothesized that converting a suitable member into a thioglycoligase could boost the acceptor range. Herein we show the engineering of an acidophilic fungal ß-xylosidase into a thioglycoligase with broad acceptor promiscuity. The mutant enzyme displays the ability to form O-, N-, S- and Se- glycosides together with sugar esters and phosphoesters with conversion yields from moderate to high. Analyses also indicate that the pKa of the target compound was the main factor to determine its suitability as glycosylation acceptor. These results expand on the glycoconjugate portfolio attainable through biocatalysis.


Assuntos
Tolerância a Medicamentos/fisiologia , Fungos/enzimologia , Fungos/metabolismo , Xilosidases/química , Xilosidases/metabolismo , Biocatálise , Domínio Catalítico , Fungos/efeitos dos fármacos , Glicoconjugados/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeos/química , Glicosilação , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese , Especificidade por Substrato , Talaromyces/enzimologia , Talaromyces/genética , Xilosidases/genética
3.
Methods Enzymol ; 597: 3-23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28935108

RESUMO

Microorganisms routinely perform complex enzymatic transformations of natural material; thus, their enzymes have the potential to tackle medical and industrial challenges. However, a vast number of microbes are recalcitrant to cultivation. Functional screening of environmental DNA allows us to tap into the seemingly boundless diversity of enzymes encoded by microbial populations. In this chapter, we describe methods for the isolation of environmental DNA, generation of metagenomic libraries, and the functional screening of these libraries for new glycosidases.


Assuntos
Bactérias/enzimologia , DNA Bacteriano/genética , Glicosídeo Hidrolases/genética , Metagenômica , Bactérias/genética , Biblioteca Gênica , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação
4.
Microb Cell Fact ; 15(1): 171, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716291

RESUMO

BACKGROUND: Glycosides are compounds displaying crucial biological roles and plenty of applications. Traditionally, these molecules have been chemically obtained, but its efficient production is limited by the lack of regio- and stereo-selectivity of the chemical synthesis. As an interesting alternative, glycosidases are able to catalyze the formation of glycosides in a process considered green and highly selective. In this study, we report the expression and characterization of a fungal ß-xylosidase in Pichia pastoris. The transglycosylation potential of the enzyme was evaluated and its applicability in the synthesis of a selective anti-proliferative compound demonstrated. RESULTS: The ß-xylosidase BxTW1 from the ascomycete fungus Talaromyces amestolkiae was cloned and expressed in Pichia pastoris GS115. The yeast secreted 8 U/mL of ß-xylosidase that was purified by a single step of cation-exchange chromatography. rBxTW1 in its active form is an N-glycosylated dimer of about 200 kDa. The enzyme was biochemically characterized displaying a K m and k cat against p-nitrophenyl-ß-D-xylopyranoside of 0.20 mM and 69.3 s-1 respectively, and its maximal activity was achieved at pH 3 and 60 °C. The glycan component of rBxTW1 was also analyzed in order to interpret the observed loss of stability and maximum velocity when compared with the native enzyme. A rapid screening of aglycone specificity was performed, revealing a remarkable high number of potential transxylosylation acceptors for rBxTW1. Based on this analysis, the enzyme was successfully tested in the synthesis of 2-(6-hydroxynaphthyl) ß-D-xylopyranoside, a well-known selective anti-proliferative compound, enzymatically obtained for the first time. The application of response surface methodology, following a Box-Behnken design, enhanced this production by eightfold, fitting the reaction conditions into a multiparametric model. The naphthyl derivative was purified and its identity confirmed by NMR. CONCLUSIONS: A ß-xylosidase from T. amestolkiae was produced in P. pastoris and purified. The final yields were much higher than those attained for the native protein, although some loss of stability and maximum velocity was observed. rBxTW1 displayed remarkable acceptor versatility in transxylosylation, catalyzing the synthesis of a selective antiproliferative compound, 2-(6-hydroxynaphthyl) ß-D-xylopyranoside. These results evidence the interest of rBxTW1 for transxylosylation of relevant products with biotechnological interest.


Assuntos
Glicosídeos/biossíntese , Pichia/genética , Talaromyces/enzimologia , Xilosidases/genética , Xilosidases/metabolismo , Sequência de Aminoácidos , Biocatálise , Glicosídeos/química , Glicosídeos/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Naftóis/química , Naftóis/metabolismo , Pichia/metabolismo , Especificidade por Substrato , Talaromyces/genética , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...